If it's not what You are looking for type in the equation solver your own equation and let us solve it.
b^2+42=-13b
We move all terms to the left:
b^2+42-(-13b)=0
We get rid of parentheses
b^2+13b+42=0
a = 1; b = 13; c = +42;
Δ = b2-4ac
Δ = 132-4·1·42
Δ = 1
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{1}=1$$b_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(13)-1}{2*1}=\frac{-14}{2} =-7 $$b_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(13)+1}{2*1}=\frac{-12}{2} =-6 $
| 17+5x=3x+20 | | 2-5x=-53 | | 1/4t=75 | | 6y=2- | | 3a+9=-4a | | 0.3(x+3)-0.5(x+3)=0.2x-0.6 | | (180-(8x-311)-(x+3))+(4x-68)=180 | | 3(2x+1)=-4(2x-2) | | (4k+4)(2k+4)=0 | | ,5(f+2)=9+5f | | 6+8p=40 | | 9e+4=5e+14=13E | | 2(3x+5)=-3(4x-4)+5x | | -13=r9=8 | | 3x–7=5(x–3) | | 3x-5=6x-11 | | 0.23y=2.53 | | 7x/2+1x/2=3x+3/2+5x/2 | | 2(u+3)=18 | | 4(5x+3)=-5(5x-5) | | 3z-2=8z-z | | 2÷3a+2=1÷3(4a+1) | | 3x2+2.5=12-5 | | 3a+9=-49 | | 7/h=13/52 | | (x+6)/8=(3/4)+(x-6)/3 | | 4/5=x/23 | | 2x+(2x+2)4-5=0 | | 2(4x+1)=-4(2x-4)+3x | | x^2+9=306 | | 2x+9=306 | | 4x=8(-2-3x) |